Gait Characterization in Duchenne Muscular Dystrophy (DMD) Using a Single-Sensor Accelerometer: Classical Machine Learning and Deep Learning Approache


Translational Research

Poster Number: S56


Albara Ah Ramli, PhD, University of California, Davis, Erik Henricson, PhD, MPH, University of California, Davis, Xin Liu, PhD, University of California, Davis, Craig McDonald, MD, UC Davis Health, Walk4Me Research Group, PhD MPH, University of California, Davis

Differences in gait patterns of children with Duchenne muscular dystrophy (DMD) and typically-developing (TD) peers are visible to the eye, but quantifications of those differences outside of the gait laboratory have been elusive. In this work, we measured vertical, mediolateral, and anteroposterior acceleration using a waist-worn iPhone accelerometer during ambulation across a typical range of velocities. Fifteen TD and fifteen DMD children from 3-16 years of age underwent eight walking/running activities, including five 25 meters walk/run speed-calibration tests at a slow walk to running speeds (SC-L1 to SC-L5), a 6-minute walk test (6MWT), a 100 meters fast-walk/jog/run (100MRW), and a free walk (FW). For clinical anchoring purposes, participants completed a Northstar Ambulatory Assessment (NSAA). We extracted temporospatial gait clinical features (CFs) and applied multiple machine learning (ML) approaches to differentiate between DMD and TD children using extracted temporospatial gait CFs and raw data. Extracted temporospatial gait CFs showed reduced step length and a greater mediolateral component of total power (TP) consistent with shorter strides and Trendelenberg-like gait commonly observed in DMD. ML approaches using temporospatial gait CFs and raw data varied in effectiveness at differentiating between DMD and TD controls at different speeds, with an accuracy of up to 100%. We demonstrate that by using ML with accelerometer data from a consumer-grade smartphone, we can capture DMD-associated gait characteristics in toddlers to teens.