Background
Speech impairment is a prevalent symptom in neuromuscular and neurodegenerative disorders, however the mechanism and extent of speech impairment varies significantly in different disorders, and even within patients with the same disease. Thus, there is a need for scalable and cost-effective solutions to assess speech impairment as a potential tool for diagnosing and tracking neurological and neuromuscular disorders.
Objective
To assess and compare speech features across multiple neuromuscular and neurodegenerative disorders using BioDigit Speech.
Methods
Passage reading speech assessments were performed in four different studies using BioDigit Speech: 1) amyotrophic lateral sclerosis (ALS) (n=11), 2) progressive supranuclear palsy (PSP) (n=11), Parkinson’s disease (PD) (n=10), 3) Huntington’s Disease (HD) (n=41), and 4) Myasthenia gravis (n=20, screening). Group differences and correlations with clinical scores were explored. A machine learning classifier was trained to automatically differentiate different patient populations based on their speech features.
Results
Machine learning classification models achieved a weighted accuracy of 90% in identifying the disease from simple speech tasks with a sensitivity of 79% for PSP, 90% for PD, 100% for ALS, 86% for HD and 95% for controls. In ALS, bulbar dysfunction as measured by the ALSFRS-R was associated with reduced articulatory rate and intelligibility. Similar observations were made in PSP and HD. In addition, multiple speech measures correlated with the MoCA, including similarity and intelligibility in PD, HD and PSP. Machine learning models demonstrated strong capabilities in predicting clinical diagnoses and outcomes with high accuracy and sensitivity.
Conclusion
Our findings highlight the potential of BioDigit Speech as a valuable tool to aid in identifying and tracking multiple neuromuscular and neurodegenerative disorders.